All Courses
All Courses
Quarter Car model
Spring - Mass -Damper Dynamic System
Equations of motion of the mass damper system are
m..x+.xc+kx=0orF
ωn=√km⇒ Natural frequency
C_critical=2⋅√k⋅m
ζ=(CC_critical) ⇒ = Damping ratio
Quater Car Model: Equations of motion
ms = sprung __mass
mus = unsprung_mass
ks = spring stiffness
ktr = tyre stiffness
Csh = Shock absorber damping coefficient
Ct = tyre damping coefficient
Z1 = Sprung mass displacement
Z2 = Unsprung mass displacement
.Z = velocity
..Z = acceleration
Sprung mass equation of motion:
ms..Z1+Csh(.Z1−.Z2)+ks(.Z1− .Z2)=0
Unsprung mass equation of motion
mus..Z2+Csh(.Z2−.Z1)+ks(.Z2− .Z1)+Ct(.Z2−.Z0)+kt(.Z2− .Z0) =0
Force on tyre
F(t) = kt⋅Z0+Ct⋅.Z0
Free Responce / Undamped vibrations
The general solutions of differential equations are in the form of
Aeat⋅sin(ω⋅t)+Beat⋅sin(ω⋅t)
z1=Z1sin(ω⋅t)
z2=Z2sin(ω⋅t)
ω=ωn; For free responce natural frequency is taken into consideration
Damping terms are neglected
Csh =0 ; Ct =0 ; Z1 =0 ;
Substituting into sprung mass equation
msd2dt2(z1sinωt)+ksz1sinωt−ksz2sinωt=0
Substituting into un_sprung mass equation
musd2dt2(z2sinωt)+ksz2sinωt−ksz1sinωt+ktz2sinωt=0
After simplification
(−msω2n+ks)z1−ksz2=0
−ksz1+(−musω2n+ks+kt)z2=0
writing the above equations in matrix form
[−msω2n+ksks−ks−musω2n+ks+kt](z1z2)=0
If the determinant of the above matrix is zero; |det| = 0 then the equations are satisfied for any z1andz2 (characteristic equation)
ω4n(msmus)+ω2n(−msks−mskt−musks)+kskt=0
The above equation can be represented as Ax2+Bx+c
ω2n→x;
where roots are −B+−√B2−4AC2A
fn=ωn2⋅π
fn−s=12π⋅ ⎷(ksktks+ktms) → springs in series
fn−us=12π⋅√ks+ktmus→ springs in parallel
⋆Generally, unsprung mass is taken as 10% as that of the sprung mass.
if ms = 1800 kg ; mus = 180 kg
ks = 88kN/m; kt = 700 kN/m
then Natural frequency of sprung mass fn−s = 1.04 Hz → body
Natural frequency of unsprung mass fn−us = 10 hz → wheel.
Response to Road Excitation - Transmissibility Ratio
For external sources ωn is replaced by ω
[−msω2n+csωn+ks−csωn−ks−csωn−ks−musω2n+(cs+cus)ωn+ks+kus](zszus)=(0csωn+kus)Z0
A X = B
X = AinverseB (A−1B)
ZsZ0 andZusZ0 are called Transmissibility ratio
ZsZ0 =(cscusω2+(kscus+kuscs)ω+kskusmsmusω4+(mscs+mscus+mu)ω3+(ksmus+ms(ks+kus+cs(ω))ω2)+(kscus+kuscs)ω+kskus)
ZusZ0=(mscusω3+(cscus+mskus)ω2+(kscus+kw(s)ω)+kskus(msmusω4+(mscs+mscus+mu)ω3+(ksmus+ms(ks+kus+cs(ω))ω2)+(kscus+kuscs)ω+kskus)
With regards to suspension performance, there are three aspects that need to be considered.
Suspension Performance Evaluation:
Vibration Isolation:
This can be evaluated by the response of sprung mass (passenger area) to the excitation from the ground.
Transmissibility ratio ((ZsZ0)) can be used to assess vibration isolation.
Suspension travel:
It can be measured by spring deflection or in other terms it can be defined as the relative displacement between the sprung mass and the unsprung mass relative to road input
Zus−ZsZ0
It defines the space required to accommodate the suspension movement during jounce and rebound. Also known as 'Rattle space'
Road holding:
It is necessary for the road to remain in contact with the ground. This is normally influenced by the force between the tyre and the road. This force can be represented by the dynamic tyre deflection relative to the road surface.
Zus−ZoZo
Due to the sprung mass on the tyre, there will be a static deflection on the tyre and due to this deflection, the tyre gets flattened at the contact patch and loses contact with the road. If the deflection is zero that is the tyre regains its original shape then the normal force will also be zero. Beyond this point, the tyre will be lifted from the ground.
For a better design, there should be a tradeoff between these three transmissibility ratios so that the suspension will be optimized.
State Space Representation :
dx1dt=a11+a12x2+b1v(t)
dx2dt=a21+a22x2+b2v(t)
y=c1x1+c2x2+d1v(t)
(.x1.x2)=[a11a21a21a22](x1x2)+(b1b2)⋅v(t)
y=[c1c2][x1x2]+d1⋅v(t)
x1 and x2 are called state variables
A = [a11a21a21a22] → System matrix
B, G = (b1b2)→ Input matrix
C = [c1c2]→ Output matrix
D = d1 → feed forward matrix
Quater car model Equations of motion in State Space Representation :
ms..Zs+cs(.Zs−.Zus)+ks(Zs−Zus)=−F
mus..Zus+cs(.Zus−.Zs)+ks(Zus−Zs)+cus(.Zus−.Zo)+kus(Zus−Zo)=F
ddt⎡⎢ ⎢ ⎢ ⎢ ⎢⎣Zus−Zo.ZusZus−Zo.Z⎤⎥ ⎥ ⎥ ⎥ ⎥⎦=⎡⎢ ⎢ ⎢ ⎢ ⎢⎣0100−kusmus−cs+cusmuskusmuscsmus0−1010csms−ksms−csms⎤⎥ ⎥ ⎥ ⎥ ⎥⎦⎡⎢ ⎢ ⎢ ⎢ ⎢⎣Zus−Zo.ZusZus−Zo.Z⎤⎥ ⎥ ⎥ ⎥ ⎥⎦+⎡⎢ ⎢ ⎢ ⎢⎣0msmus0−1⎤⎥ ⎥ ⎥ ⎥⎦Fms+⎡⎢ ⎢ ⎢ ⎢⎣−1cusmus00⎤⎥ ⎥ ⎥ ⎥⎦.Zo
A → ⎡⎢ ⎢ ⎢ ⎢ ⎢⎣0100−kusmus−cs+cusmuskusmuscsmus0−1010csms−ksms−csms⎤⎥ ⎥ ⎥ ⎥ ⎥⎦
B → ⎡⎢ ⎢ ⎢ ⎢⎣0msmus0−1⎤⎥ ⎥ ⎥ ⎥⎦Fms
G → ⎡⎢ ⎢ ⎢ ⎢⎣−1cusmus00⎤⎥ ⎥ ⎥ ⎥⎦.Zo
Since .x = Ax + Bu + Gw
`y = Cx + DG
Outputs → C
Tyre deflection = [1010]
Suspension stroke = [0010]
Sprung acceleration = [0csms−ksms−csms]
`rho = m_s/m_(us)
ω1=√ksms
ω2=√kusmus
ζ1=cs 2msω1
ζ2=cs 2musω2
A → ⎡⎢ ⎢ ⎢ ⎢⎣0100−ω22−2(ρζ1ω1+ζ2ω2)ρω212ρζ1ω10−10102ζ1ω1−ω21−2⎤⎥ ⎥ ⎥ ⎥⎦
B → [0ρ0−1]
G → [−12ζ2ω200]
clear all
close all
clc
% x(1) = tire deflection (zus-z0)
% x(2) = velocity of unsprung mass (d(zus)/dt)
% x(3) = suspension stroke (zs-zus)
% x(4) = sprung mass speed (d(zs)/dt)
% parameters
w1 = 2*pi; % w1 = sqrt(ks/ms)
w2 = 20.0*pi; % w2 = sqrt(kus/mus)
z1 = 0.3; % z1 = cs/(2*ms*w1)
z2 = 0.0; % z2 = cus/(2*mus*w2)
rho = 10.; % rho = ms/mus
% Open loop system equations:
A = [0 1 0 0
-w2^2 -2*(z1*w1*rho+z2*w2) rho*w1^2 2*z1*w1*rho
0 -1 0 1
0 2*z1*w1 -w1^2 -2*z1*w1];
B = [0 rho 0 -1]';
G = [-1 2*z2*w2 0 0]';
% Define outputs of interest:
% output=tire deflection
C1=[1 0 0 0]; D1= 0.0;
[num1, den1]=ss2tf(A,G,C1,D1,1);
% output=suspension stroke
C2=[0 0 1 0]; D2= 0.0;
[num2, den2]=ss2tf(A,G,C2,D2,1);
% output=sprung mass acceleration.
C3=[A(4,:)]; D3= G(4);
[num3, den3]=ss2tf(A,G,C3,D3,1);
%Generate the white noise input w(t)
t=[0:0.001:1];
w=0.1*randn(size(t)); % Assume road velocity is
% white Gaussian with
% standard deviations of 0.1 (m/sec)
%% Simulate the response of interest:
y1=lsim(num1,den1,w,t);
y2=lsim(num2,den2,w,t);
y3=lsim(num3,den3,w,t);
clf;
figure(1), subplot, subplot(221)
plot(t,w,'r')
xlabel('Time (sec)'); ylabel('Road speed (m/sec)')
subplot(222), plot(t,y1,'r');
xlabel('Time (sec)'); ylabel('Tire Def (m)')
subplot(223), plot(t,y2,'r');
xlabel('Time (sec)');
ylabel('Susp Stroke (m)')
subplot(224), plot(t,y3,'r');
xlabel('Time (sec)');
ylabel('Sprung. mass accel (m/sec^2 )')
figure(2)
freq=logspace(-1,2.7,200); % 10^-1 to 10^2.7 rad/sec, 200 points
[mag1, phase1]=bode(num1,den1,freq);
loglog(freq/(2*pi),mag1,'r');
title('Frequency Response Magnitude');
xlabel('Frequency (Hz)');
ylabel('Tire def (m/(m/sec))');
grid
figure(3)
[mag2, phase2]=bode(num2,den2,freq);
loglog(freq/(2*pi),mag2,'r');
title('Frequency Response Magnitude');
xlabel('Frequency (Hz)');
ylabel('Susp stroke (m/(m/sec))');
grid
figure(4)
[mag3, phase3]=bode(num3,den3,freq);
loglog(freq/(2*pi),mag3,'r');
title('Frequency Response Magnitude');
xlabel('Frequency (Hz)');
ylabel('Sprung mass accel (m/sec^2 /(m/sec))');
grid;
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Quater car modelling using Matlab
Quarter Car model …
22 Nov 2022 09:11 PM IST
Single cylinder SI engine modelling using GT-Suite
Introduction to GT Suite Effective utilization of simulation software with human intelligence is required…
03 Apr 2022 12:50 AM IST
internship formulas
∂ωx∂t=[2⋅a2a2+c2−2⋅a2a2+b2]⋅ωz⋅ωy+Posin(t)⋅2⋅a2a2+b2⋅ωZ+2⋅a2a2+c2⋅ωy+Posin(t)+L⋅τx ∂ωy∂t=[2⋅b2a2+b2−2⋅b2b2+c2]⋅ωx⋅ωz+Pocos(t)⋅2⋅b2a2+b2⋅ωZ−2⋅b2b2+c2⋅ωx+Pocos(t)+L⋅τy…
30 Oct 2021 02:16 PM IST
CI engine modelling of 2019 Chevrolet Silverado Duramax Diesel Engine Using GT Suite
Introduction to CI engines Compression - ignition or diesel engine…
17 Sep 2021 09:30 AM IST
Related Courses
0 Hours of Content