RELATED RECENT PLACEMENTS
DHIRAJ KADAM
Tech Mahindra
MIT Group of Institutions Aurangabad
Mukesh Kanna S
Tech Mahindra
Panimalar Engineering College
SATHIYA MOORTHY A
Tech Mahindra
Apollo Engineering College
G Harish Jairaj
IIT Madras
Velammal Engineering College
Gorle Balaram
Relaince Jio
Sri Venkateswara College Of Engineering & Technology
Prakash Shukla
Escorts
Kamla Nehru Institute of Technology, Sultanpur (U.P.)
Gunashekar Srinivas
Equilibrium Solutions
Vellore Institute of Technology - VIT Chennai
Durga Varaprasad
Tata Elxsi
Osmania University Hyderabad
This course is full of best-in-class content by leading faculty and industry experts in the form of videos and projects
Medical instruments are at the heart of the healthcare industry as they are used in the diagnosis and treatment of a broad-spectrum of diseases. By interfacing with the human body through detecting biosignals, medical instruments enhance the provision of monitored prevention, treatment, and rehabilitation. There are constant developments in the medical instrumentation industry, with an exponential rise foreseen in upcoming years. This opens up a wide range of opportunities for budding engineers seeking to work in the biomedical industry.
By taking this course, learners will
Who can enrol in this course?
Students and working professionals with a background in biomedical engineering can enrol in this course.
On a daily basis we talk to companies in the likes of Tata Elxsi and Mahindra to fine tune our curriculum.
Module 1 - Introduction to Biomedical Instrumentation
Biomedical instrumentation includes devices that measure electrical signals from the body. These devices use sensors to detect biological signals that are then processed and interpreted to study, diagnose, and treat patients. It is important for learners to understand the parts in a biomedical instrumentation system, and the accuracy of measurement involved.
This module will cover
Module 2 - Bioelectric Signals
Bioelectric signals are electrical signals generated from living beings. These signals vary with time and are low in frequency and amplitude. A few examples of bioelectric signals include galvanic skin response, EEG, ECG, and EOG signals. Bioelectric signals are the measurand in the biomedical instrumentation system, as sensors will detect these signals for further processing. It is important for learners to understand the sources of bioelectric signals from the human body, and how they interface with biomedical instrumentation.
This module will cover
Module 3 - Biomedical Transducers
After biosignals are detected by sensors, transducers convert these signals into electrical signals that can be processed by the biomedical instrument. There are many different transducers used in biomedical applications. It is important for learners to understand the properties and classifications of transducers.
This module will cover
Module 4 - Different Types of Bioelectric Signals with Waveforms
Bioelectric signals are recorded as waveforms. Oftentimes, noise and interference disrupt these signals and result in unclear waveforms. Amplifiers such as operational amplifiers are used to increase the integrity of the biosignal. There are also filters used to reduce noise disruption. It is important for learners to understand bioelectric signals, their corresponding waveforms, and noise interruptions.
This module will cover
Module 5 - Biopotential Amplifiers
As biosignals have a low amplitude, biopotential amplifiers are used to enhance the strength of the signal. By doing this, the signal can clearly be processed and recorded for interpretation. It is important for learners to understand the different biopotential amplifiers, and the signal processing involved.
This module will cover
Module 6 - ECG and EEG Acquisition Systems
The electrocardiogram (ECG) and electroencephalogram (EEG) are instruments used to measure bioelectric signals. While the ECG records bioelectric signals generated by the heart, the EEG records electrical activity in the brain. Both instruments have electrodes that are placed on the surface of the body to acquire the signals. These signals are recorded and interpreted by medical professionals for diagnostic purposes. It is important for learners to understand the working of the ECG and EEG in acquiring bioelectric signals.
This module will cover
Module 7 - Hemodialysis Machine
The hemodialysis machine is used when a patient’s kidneys are damaged or not functional. This machine works by drawing blood out of the body and filtering it just like the kidney would. After the blood is filtered, it gets sent back inside the body. It is important for learners to understand the basics of the renal system and the process of dialysis.
This module will cover
Module 8 - Electric Impulse Generator
Electric impulse generators produce surges of current or voltage in the form of electric impulses. There are many devices in the healthcare industry that use these generated electric impulses for therapeutic or rehabilitative purposes. It is important for learners to understand the different biomedical applications of electric impulses, and the working of devices that generate them.
This module will cover
Module 9 - Ventilator Machine and Oxygen Concentrator
Artificial ventilation is when patients receive support to respire. Ventilator machines are an example of this as they aid in the process of breathing when patients cannot do so themselves. Another device that provides support when breathing is an oxygen concentrator. This device provides an additional source of oxygen to patients. It is important for learners to understand the working principle of different methods of artificial ventilation and oxygen concentrators.
Module 10 - Heart-Lung Support Systems
Biomedical instruments are also used when the heart and lungs do not function properly. These heart-lung support systems support or mimic the working of the heart and lungs in the case of life-threatening conditions, surgeries, or organ damage. It is important for learners to understand the working of biomedical instruments involved in supporting the cardiovascular and respiratory system.
This module will cover
Module 11 - Medical Robotics
Medical robots are used in the medical field to perform certain actions that would otherwise have to be done by surgeons. There are different types of medical robots, each having their own role. For instance, surgical robots are used in minimally invasive medical procedures for the precision and control they bring to the table. It is important for learners to understand the basics of medical robots and the different types.
This module will cover
Module 12 - Artificial Intelligence in Healthcare, Safety Guidelines, and Job Roles
Advancements in the artificial intelligence domain have extended into the healthcare industry as there are machine learning algorithms used to study and understand medical data. However, before any medical device is released in the market, it has to be standardized and deemed safe for clinical applications. It is important for learners to understand the standards medical devices are held to, developments in the medical technology industry, and the opportunities they have in it.
This module will cover
Our courses have been designed by industry experts to help students achieve their dream careers
Our projects are designed by experts in the industry to reflect industry standards. By working through our projects, Learners will gain a practical understanding of what they will take on at a larger-scale in the industry. In total, there are 2 Projects that are available in this program.
Multi-Parameter Patient Monitoring System
Learners are required to design a multi-parameter physiological monitoring system. The design should explain the physiological signals selected with specifications, a schematic diagram of the multi-parameter monitoring system, safety requirements, and how the design is qualified. They are also to draw the layout of the display screen, and show how the data will be acquired and stored. In addition to this, learners will have to design an ICU with beds using the multi-parameter monitor and how it will network with other devices. They will also have to design a central nursing station.
Robotic Surgery for Kidney Transplantation
Learners are required to write a report on robotic surgeries for kidney transplantation. The analysis should include specific requirements, the surgical robot used and the procedure it follows (with a block diagram), a flow chart of the procedure, and the tasks performed by AI used in robotic kidney transplantation. Learners are also required to include the preoperative, perioperative, and postoperative steps taken to ensure a successful surgery. They must also detail the ethical concerns and regulation of a kidney transplant procedure, and mention the machine classifications and IEC 60601 standards applied to the equipment.
Our courses have been designed by industry experts to help students achieve their dream careers
Skill-Lync has received honest feedback from our learners around the globe.
Talk to our career counsellors to get flexible payment options.
INR 45,000
Inclusive of all charges
Become job ready with our comprehensive industry focused curriculum for freshers & early career professionals
1 Year Accessto Skill-Lync’s Learning Management System (LMS)
Personalized Pageto showcase Projects & Certifications
Live Individual & Group Sessionsto resolve queries, Discuss Progress and Study Plans.
Personalized & Hands-OnSupport over Mail, Telephone for Query Resolution & Overall Learner Progress.
Job-Oriented Industry Relevant Curriculumavailable at your fingertips curated by Global Industry Experts along with Live Sessions.
Our courses are designed by leading academicians and experienced industry professionals.
1 industry expert
Our instructors are industry experts along with a passion to teach.
13 years in the experience range
Instructors with 13 years extensive industry experience.
Areas of expertise
Please fill in your number & an expert from our team will call you shortly.